Fórmula para calcular las potencias zn de un número complejo z.
El teorema de De Moivre establece que si un número
complejo z = r(cos x + i sin x), entonces zn = rn(cos nx + i sin nx),
en donde n puede ser enteros positivos,
enteros negativos, y exponentes
fraccionarios.
enteros negativos, y exponentes
fraccionarios.
Esta igualdad recibe el nombre de fórmula de Moivre, en honor del matemático francés Abraham de Moivre (1667-1754).
Potencia
La potencia es un producto de factores iguales, por tanto la regla es la misma que la de multiplicar.
Radicación de Números Complejos
La operación de radicación es inversa a la de potenciación
Para un único número complejo zn , existen varios complejos z, que al elevarlos a la potencia n, nos da el mismo complejo zn.
Para hallar las raíces de un número complejo se aplica la fórmula de Moivre, teniendo en cuenta que para que dos complejos coincidan han de tener el mismo módulo y la diferencia de sus argumentos ha de ser un múltiplo entero de 360º.
Sea Ra un número complejo y considérese otro complejo R'a', tal que:
Ra = (R' a' )n = ((R' )n )n a'
Aunque esto parece aportar una infinidad de soluciones, nótese que si a k se le suma un múltiplo de n, al dividir el nuevo argumento, éste aparece incrementado en un número entero de circunferencias. Por tanto, basta con dar a k los valores 1, 2, 3, ..., n-1, lo que da un total de n - 1 raíces, que junto a k = 0 da un total de n raíces.
Potencia
La potencia es un producto de factores iguales, por tanto la regla es la misma que la de multiplicar.
Radicación de Números Complejos
La operación de radicación es inversa a la de potenciación
Para un único número complejo zn , existen varios complejos z, que al elevarlos a la potencia n, nos da el mismo complejo zn.
Para hallar las raíces de un número complejo se aplica la fórmula de Moivre, teniendo en cuenta que para que dos complejos coincidan han de tener el mismo módulo y la diferencia de sus argumentos ha de ser un múltiplo entero de 360º.
Sea Ra un número complejo y considérese otro complejo R'a', tal que:
Ra = (R' a' )n = ((R' )n )n a'
Aunque esto parece aportar una infinidad de soluciones, nótese que si a k se le suma un múltiplo de n, al dividir el nuevo argumento, éste aparece incrementado en un número entero de circunferencias. Por tanto, basta con dar a k los valores 1, 2, 3, ..., n-1, lo que da un total de n - 1 raíces, que junto a k = 0 da un total de n raíces.
No hay comentarios:
Publicar un comentario